On a generalization of central Armendariz rings

Authors

  • H. H. S. Javadi Department of Mathematics and Computer Science, Shahed University, Tehran, Iran
  • M. Sanaei Department of Mathematics, Islamic Azad University, Central Tehran Branch, 13185/768, Iran
  • Sh. Sahebi Department of Mathematics, Islamic Azad University, Central Tehran Branch, 13185/768, Iran
Abstract:

In this paper, some properties of $alpha$-skew Armendariz and central Armendariz rings have been studied by variety of others. We generalize the notions to central $alpha$-skew Armendariz rings and investigate their properties. Also, we show that if $alpha(e)=e$ for each idempotent $e^{2}=e in R$ and $R$ is $alpha$-skew Armendariz, then $R$ is abelian. Moreover, if $R$ is central $alpha$-skew Armendariz, then $R$ is right p.p-ring if and only if $R[x;alpha]$ is right p.p-ring. Then it is proved that if $alpha^{t}=I_{R}$ for some positive integer $t$, $ R $ is central $ alpha $-skew Armendariz if and only if the polynomial ring $ R[x] $ is central $ alpha $-skew Armendariz if and only if the Laurent polynomial ring $R[x,x^{-1}]$ is central $alpha$-skew Armendariz.‎

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Properties of Armendariz Rings and Weak Armendariz Rings

We consider some properties of Armendariz and rigid rings. We prove that the direct product of rigid (weak rigid), weak Armendariz rings is a rigid (weak rigid), weak Armendariz ring. On the assumption that the factor ring R/I is weak Armendariz, where I is nilpotent ideal, we prove that R is a weak Armendariz ring. We also prove that every ring isomorphism preserves weak skew Armendariz struct...

full text

On Classical Quotient Rings of Skew Armendariz Rings

Let R be a ring, α an automorphism, and δ an α-derivation of R. If the classical quotient ring Q of R exists, then R is weak α-skew Armendariz if and only if Q is weak α-skew Armendariz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly ci...

full text

On quasi-Armendariz skew monoid rings

Let $R$ be a unitary ring with an endomorphism $σ$ and $F∪{0}$ be the free monoid generated by $U={u_1,…,u_t}$ with $0$ added, and $M$ be a factor of $F$ setting certain monomial in $U$ to $0$, enough so that, for some natural number $n$, $M^n=0$. In this paper, we give a sufficient condition for a ring $R$ such that the skew monoid ring $R*M$ is quasi-Armendariz (By Hirano a ring $R$ is called...

full text

a generalization of strong causality

در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...

Ore extensions of skew $pi$-Armendariz rings

For a ring endomorphism $alpha$ and an $alpha$-derivation $delta$, we introduce a concept, so called skew $pi$-Armendariz ring, that is a generalization of both $pi$-Armendariz rings, and $(alpha,delta)$-compatible skew Armendariz rings. We first observe the basic properties of skew $pi$-Armendariz rings, and extend the class of skew $pi$-Armendariz rings through various ring extensions. We nex...

full text

a generalization of reversible rings

in this paper, we introduce a class of rings which is a generalization of reversible rings. let r be a ring with identity. a ring r is called central reversible if for any a,b ∈ r, ab=0 implies ba belongs to the center of r. since every reversible ring is central reversible, we study sufficient conditions for central reversible rings to be reversible. we prove that some results of reversible ri...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 08  issue 01

pages  53- 61

publication date 2019-02-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023